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Abstract: Modulation Power Spectra include dimensions of spectral and
temporal modulation that contribute significantly to the perception of
musical instrument timbres. Nevertheless, it remains unknown whether
each instrument’s identity is characterized by specific regions in this repre-
sentation. A recognition task was applied to tuba, trombone, cello, saxo-
phone, and clarinet sounds resynthesized with filtered spectrotemporal
modulations. The most relevant parts of this representation for instrument
identification were determined for each instrument. In addition, instru-
ments that were confused with each other led to non-overlapping spectro-
temporal modulation regions, suggesting that musical instrument timbres
are characterized by specific spectrotemporal modulations.
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1. Introduction

Acoustical correlates related to the perception of musical instrument timbre have been
studied for some time (Miller and Carterette, 1975) and are mainly defined through
dissimilarity experiments leading to a multidimensional representation. From this rep-
resentation, timbre dimensions have been correlated with different acoustic descriptors
such as attack time and spectral centroid (McAdams et al., 1995). Recent studies have
provided evidence for the prominent role of spectrotemporal modulations for timbre
perception and sound source classification (Hemery and Aucouturier, 2015) and more
specifically for musical instruments (Patil et al., 2012; Elliott et al., 2013). Moreover,
these spectrotemporal modulations have been shown to be plausibly extracted through
specific neural processes at the level of primary auditory cortex (Shamma, 2001).
Nevertheless, it remains unknown which aspects of spectrotemporal modulations are
relevant for the perception of musical instrument timbre and whether the same modu-
lation properties are relevant across different musical instruments.

Here we tackled these questions for a small subset of musical instruments
to determine which parts of the Modulation Power Spectrum (MPS) lead to the recog-
nition of five different sustained instrument timbres (tuba, trombone, saxophone,
clarinet, and cello). Based on a “molecular” approach (Gosselin and Schyns, 2001), a
recognition task was set up in which listeners had to identify the instruments from a
processed version of the original sounds composed from only a small part of their
MPS. The aim was to determine which parts of the MPS are the most salient for the
recognition of these five instruments.

2. The MPS of musical sounds

The MPS is defined here as the two-dimensional (2D) Fourier transform of the time-
frequency representation of a sound signal (Elliott and Theunissen, 2009; Singh and
Theunissen, 2003). More specifically, the time-frequency Xðt; f Þ representation itself is
defined as the amplitude of the Fourier transform obtained with a Hamming window
and is commonly known as the magnitude of the Short-Term Fourier Transform
(STFT) or the Gabor Transform. Here, the length of the window equals 46.43 ms with
a hop size of 11.61 ms and the sample rate is set to 44 100 Hz. These parameters were
chosen to fulfill the time-frequency constraints for properly representing the harmonic
structure of the stimuli (Rabiner and Schafer, 1978). The MPS is the amplitude of the
successive Fourier transforms along the STFT temporal and frequency axes. This MPS
representation is composed of two dimensions: the temporal modulations (in Hz) and
the spectral modulations (in cycles/Hz). To summarize, the MPS is the 2D Fourier
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transform of the modulus of a linear time-frequency representation and can be under-
stood as a representation of the spectral and temporal regularities of a spectrogram. A
detailed description of how regularities of a spectrogram translate into the MPS is pre-
sented in Elliott and Theunissen (2009). Formally, MPS is defined by the following
equation:

MPSðs; rÞ ¼
ð ð
jXðt; f Þje�2pisf e�2pirtdfdt; (1)

where s and r are the spectral and temporal modulations, respectively. The resolution
of MPS ðs; rÞ is constrained by the resolution of the time-frequency representation
Xðt; f Þ mainly characterized by the sizes of the temporal Hamming windows and the
overlap between two successive windows. They indeed define the upper and lower
boundaries of the spectral and temporal modulations axes. Constrained by the uncer-
tainty principle rt � 1=4prf where rt and rf correspond to the uncertainties along the
temporal and spectral modulations dimensions, respectively, we here chose rt ¼ 11:61
ms and rf ¼ 21:53 Hz leading to upper boundaries of 43 Hz and 23.22 cycles/Hz, which
correspond to values relevant for the auditory perception of sounds such as speech
(Elliott and Theunissen, 2009).

3. Filtering the MPS

In order to determine which parts of the MPS lead to the recognition of musical
instruments, we employed a technique for filtering instrumental sounds in the spectro-
temporal modulation domain. With this technique, a sound is processed by keeping
only a part of its MPS, this filtered version is reconstructed, and whether the informa-
tion that remains is relevant for the recognition of the initial instrument is then evalu-
ated. This filtering process degrades the temporal and spectral regularities of the origi-
nal sounds, which become more or less identifiable according to the remaining
acoustical information. Hence, the MPS is first multiplied by a 2D Gaussian filter fre-
quency response Gðls;rsÞ;ðlr;rrÞðs; rÞ where ls; lr and rs; rr are the means and standard
deviations (SDs) in the spectral and temporal modulation dimensions, respectively,

G ls;rsð Þ; lr;rrð Þ s; rð Þ ¼ exp � 1
2

s� ls

rs

� �2
 !

exp � 1
2

r� lr

rr

� �2
 !

: (2)

It must be noted that the MPS and the filter G are composed of four quadrants with
positive and negative spectral and temporal modulations. For the sake of simplicity
and as the filter is perfectly symmetric in amplitude and anti-symmetric in phase in the
spectral and temporal modulation dimensions, in the following, only values of positive
spectral modulations and rates are considered. The MPS-filtered spectrogram Yðt; f Þ
can then be reconstructed by a 2D inverse Fourier transform of the processed MPS:
MPSðs; rÞ � Gðls;rsÞ;ðlr;rrÞðs; rÞ. Note that Yðt; f Þ is magnitude only, lacks the phase, and
thus does not allow for perfect reconstruction of the waveform directly from standard
reconstruction techniques such as the overlap add method (Rabiner and Schafer,
1978). We therefore used Griffin and Lim’s (1984) algorithm in a MATLAB implementa-
tion provided by Slaney (1994) in order to iteratively build a signal, the STFT magni-
tude of which is as close as possible to Yðt; f Þ in a quadratic sense. Twenty-five itera-
tions lead to a correct reconstruction of the waveform for an acceptable computation
time. Practically, the quality of the reconstruction is evaluated by computing the aver-
aged relative log-error ratio � in percent between the desired spectrogram Yðt; f Þ and
the STFT magnitude of the reconstructed waveform Ybðt; f Þ,

� ¼ 100
1

Nf Nt

XNt

ti¼1

XNf

fi¼1

log Y ti; fið Þð Þ � log Yb ti; fið Þð Þ
log Y ti; fið Þð Þ

����
����; (3)

where Nf and Nt are the number of frequency and time bins, respectively. Note that
log Z was floored to �100 when log Z is smaller.

Filtering the MPS implies different modifications of the original sound. For
instance, when low spectral modulations and rates are retained after filtering, the
resulting sound preserves the slow envelope variations and the coarse spectral structure
of the original sound (e.g., formants and pitch). Conversely, retaining the high spectral
modulations and rates keeps the fine temporal and spectral structure of the sound.
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4. Materials and methods

4.1 Participants

Twenty-three participants (16 females) with ages between 18 and 30 (M¼ 22.9,
SD¼ 3.2) took part in the experiment. All the participants were musicians having com-
pleted at least second-year university-level training. Participants provided informed
consent, had normal hearing, and were compensated for their time.

4.2 Stimuli

The stimuli were five arpeggios generated from samples of the Vienna Symphonic
Library (2015). Five instruments (trombone, tuba, tenor saxophone, cello, and clarinet)
and three pitches (F#3–185.0 Hz, C4–261.6 Hz, and F#4–370.0 Hz) were chosen. For
each instrument, the three notes were equalized in loudness in a preliminary experi-
ment. Their durations were all cut to 0.5 s with a raised cosine fade-out amplitude
envelope of 50-ms duration to create a constant duration of 500 ms to avoid discrimi-
nation based on this criterion. The attack was preserved. Finally, arpeggios were gener-
ated by concatenating the three notes from the lowest to the highest with no silences
between the notes. The peak level of the stimuli ranged from 58 to 71 dB Sound
Pressure Level (A-weighted).

4.3 Apparatus

The experiment took place in an IAC Acoustics double-walled sound-isolation chamber
(IAC Acoustics, Bronx, NY). Stimuli were sampled at 44 100 Hz and presented over
Sennheiser HD280Pro headphones (Sennheiser Electronics GmbH, Wedemark, Germany)
using a Macintosh computer (Apple Computer, Inc., Cupertino, CA) with digital-to-ana-
log conversion on a Grace Design m904 monitor system (Grace Digital Audio, San
Diego, CA). The experimental interface and data collection were programmed in the
Max7 audio software environment (Cycling ’74, San Francisco, CA) and the MATLAB soft-
ware (The Mathworks, Inc., Natick, MA) interacting via the udp protocol, respectively.

4.4 Procedure

Participants first completed a standard pure-tone audiogram to ensure normal hearing
with hearing thresholds of 20 dB Hearing Level or better at octave-spaced frequencies
in the range of 250–8000 Hz. The task was 5-Alternative Forced Choice. In each trial,
the participants were asked to recognize the instrument that played the arpeggios
among the five instruments. They were asked to answer as quickly as possible after
hearing the sounds. The triggering of the trials was controlled by the participant by
clicking on a button to play the next stimulus. The experiment began with a training
session of 15 trials (5 instruments� 3 repetitions) during which the participants per-
formed the task with the original, unprocessed sounds. After having completed the
training session, the participants began the main experiment, which was composed of
480 trials (5 instruments� 96 filters). For each instrument, the MPS was filtered with
96 Gaussian filters Gðls;rsÞ;ðlr;rrÞ with the following SDs: rs ¼ 4 cycles=Hz and rr ¼ 5 Hz
overlapping by 25% in each dimension (12 rates and 8 spectral modulations, see Fig.
1). These SDs were determined by empirical tests in order to provide a good trade-off

Fig. 1. Sampling of the MPS by 96 Gaussian MPS filters. The dots show the center value and the circles the SD
of the 2D Gaussian distribution.
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between accurate sampling and a reasonable number of filters for sampling the MPS.
The relative log-error ratio [cf. Eq. (3)] for the 480 sounds equaled 10.25%. Hence in
each trial, one among the five instrument arpeggios was filtered with one filter, and the
participants had to recognize the original instrument. The order of presentation of the
480 trials was randomized for each participant.

4.5 Data analysis

For all participants and for all five instruments, a confusion matrix was computed
from the responses to the MPS-filtered sounds and association scores were tested
against chance level with a one-tailed Wilcoxon signed-rank test. The correct identifica-
tion rates, i.e., the diagonal values of the confusion matrix, were also compared with
those obtained from the identification of original sounds in the training session with a
two-tailed Wilcoxon signed-rank test. The subsequent data analysis was inspired by a
method proposed by Gosselin and Schyns (2001). In each trial, if the sound was prop-
erly associated with the instrument, the MPS-filter was added to a CorrectMask
matrix. Across all trials, each MPS-filter was added to a TotalMask matrix. For each
participant, a ProportionMask was derived by dividing CorrectMask by TotalMask. If
no region had any special perceptual significance for recognition, ProportionMask
would be homogeneous. On the contrary, if some regions were more important for rec-
ognition, they would have higher values than the other regions of the ProportionMask.

Note that our method differs from the so-called “bubbles” method proposed
by Gosselin and Schyns (2001), which was initially used to determine the most salient
parts of a face for gender and expressivity recognition. Although they used a self-
calibrating method that adjusted the number of bubbles to converge on 75% correct
recognition, here we only used single bubbles in order to determine their independent
contribution to instrument recognition. Given that MPS-filters overlap each other, the
resulting ProportionMasks represent the relative importance of each part of the MPS
to the recognition of that instrument.

For each instrument and across participants, the statistical significance of these
latter regions is determined with a one-tailed Wilcoxon signed-rank test between
ProportionMask values and the averaged value of the ProportionMask (a¼ 0.01). This
average value is then used as a threshold for computing a Boolean matrix called
DiagnosticMask out of ProportionMask.

5. Results

Table 1 presents the averaged confusion matrix across participants computed from
responses to MPS-filtered sounds. All the instruments were recognized above chance
(z> 4; p< 0.001). In addition, tuba, cello, and saxophone were significantly confused
with trombone (z¼ 2.99; p< 0.001), saxophone (z¼ 3.60; p< 0.05), and cello (z¼ 2.02;
p< 0.001), respectively. Moreover, all the MPS-filtered sounds were identified at signif-
icantly lower rates than were the original sounds (all above 85%, z> 4; p< 0.001) in
the training session, except the tuba whose original sound was correctly identified 64%
of the time (z¼ 1.02; p¼ 0.15), most likely due to the pitches being in a relatively high
register for this instrument.

Figure 2 presents the DiagnosticMask of the five instruments. The clarinet is
the instrument with the largest black area (39.3% of the MPS plane) leading to the
best correct identification (63.4%), followed by the trombone (29.7% of the MPS plane,
61.6% correct identification) and the cello (15.8% of the MPS plane, 54.7% correct
identification). For the tuba and the saxophone, only 5.8% and 7.6% of the MPS plane
provide significantly high recognition but with relatively high correct identification
rates (56.4% and 46.3%, respectively). More precisely, regions leading to the

Table 1. Confusion matrix in percent response averaged across participants computed from responses to the
MPS-filtered sounds. Stimuli are presented in rows and responses in columns. Association rates significantly
above chance are shown in bold. Note: ***p< 0.001; *p< 0.05.

Trombone Clarinet Tuba Cello Saxophone

Trombone 61.6*** 3.7 19.7 5.6 9.3
Clarinet 3.7 63.4*** 8.5 12.8 11.7
Tuba 30.3*** 3.4 56.4*** 4.0 5.9
Cello 4.4 9.2 6.6 54.7*** 25.1*

Saxophone 5.9 7.7 5.6 34.4*** 46.3***
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recognition of trombone (R2), clarinet (R3), and cello (R5) are centered on low spec-
tral modulations, from 0 to 15 cycles/Hz for the three instruments, and on low rates,
from 0 to 20 Hz, 30 Hz, and 10 Hz, respectively. For tuba and saxophone, note that
the relevant regions R1 and R4 are centered elsewhere in the MPS plane: from 13 to
23 cycles/Hz and 0 to 8 Hz for tuba and from 0 to 7.5 cycles/Hz and 0 to 30 Hz for
saxophone. Note that 25.1% of regions leading to the recognition of tuba overlap with
those of the trombone. More strikingly, the saxophone’s relevant regions do not over-
lap with those of the cello. The fact that these two instruments were often confused
with one another suggests that these regions (R1 and R4) are specific to the tuba’s and
saxophone’s timbres with respect to the trombone’s and cello’s timbres, respectively.

6. Discussion and conclusion

In this study, we examined which parts of the MPS plane of a set of sustained instru-
ment sounds are relevant for their recognition. We observed that tuba, trombone,
cello, saxophone, and clarinet sounds present different relevant areas that allow them
to be identified within this set of instrument samples. In particular, saxophone and
tuba have relevant areas of very different shapes when compared to those of the three
other instruments. Moreover, concerning the saxophone, its relevant area is nearly per-
fectly adjacent to that of the cello with which it was often confused. The interest of
this result is that it provides new insight into the relevance of spectrotemporal modula-
tions for musical instrument recognition. It is worth noting that this area not only ena-
bles the recognition of the saxophone but also stresses which specific acoustic cues of
the MPS plane are characteristics of the saxophone’s timbre that distinguish it from
the cello’s timbre. These confusions between the cello and the saxophone might be
explained on mechanical grounds by the fact that reed woodwinds such as a saxophone
exhibit the same self-oscillation process as the cello, i.e., Helmholtz motion (Ollivier
et al., 2004).

This experiment reveals an interesting localization of the perceptually relevant
spectrotemporal modulation representation for the recognition of musical instruments.
These results can be put into perspective with those of Suied et al. (2012) and Isnard
et al. (2016), which highlighted the point that severely impoverished sounds, from
either their spectrotemporal modulation or their spectrotemporal representations,
remain recognizable and still convey relevant information for their recognition. Here
we complement these studies by precisely defining, and specifying the relevant spectro-
temporal modulations for the recognition of a small subset of musical sounds. Other
experiments are needed in order to fully understand the reduction of this kind of

Fig. 2. DiagnosticMasks of the five instruments. The bottom-right plot represents the superposition of the con-
tours of the five DiagnosticMasks smoothed in this representation.
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representation for a larger subset of musical sounds, e.g., impulsive sounds. Moreover,
experiments with different subsets of sounds are needed to evaluate the effect of con-
text. For example, one might expect that by removing the cello from the subset, the
relevant spectrotemporal modulations of the saxophone would be different as it was
most often confused with the cello.

Finally, this experiment validates the relevance of this molecular method to
determine perceptually sparse spectrotemporal modulation representations of sounds.
Nevertheless, supplementary experiments are also necessary here, in particular, to
determine the influence on the recognition of processed sounds of the size of the filters
along each dimension, i.e., the Gaussian SDs.
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